4.6 Bandwidth-Efficient Modulations

4.79. We are now going to define a quantity called the "bandwidth" of a signal. Unfortunately, in practice, there isn't just one definition of bandwidth.

Definition 4.80. The **bandwidth** (BW) of a signal is usually calculated from the differences between two frequencies (called the bandwidth limits). Let's consider the following definitions of bandwidth for real-valued signals [3, p 173]

- (a) **Absolute bandwidth**: Use the highest frequency and the lowest frequency in the positive-f part of the signal's nonzero magnitude spectrum.
 - This uses the frequency range where 100% of the energy is confined.
 - We can speak of absolute bandwidth if we have ideal filters and unlimited time signals.
- (b) **3-dB bandwidth** (half-power bandwidth): Use the frequencies where the signal power starts to decrease by 3 dB (1/2).
 - The magnitude is reduced by a factor of $1/\sqrt{2}$.
- (c) **Null-to-null bandwidth**: Use the signal spectrum's first set of zero crossings.
- (d) **Occupied bandwidth**: Consider the frequency range in which X% (for example, 99%) of the energy is contained in the signal's bandwidth.
- (e) **Relative power spectrum bandwidth**: the level of power outside the bandwidth limits is reduced to some value relative to its maximum level.
 - Usually specified in negative decibels (dB).
 - For example, consider a 200-kHz-BW broadcast signal with a maximum carrier power of 1000 watts and relative power spectrum bandwidth of -40 dB (i.e., 1/10,000). We would expect the station's power emission to not exceed 0.1 W outside of $f_c \pm 100$ kHz.

Example 4.81.

Example 4.82.

Example 4.83.

Example 4.84. Message bandwidth and the transmitted signal bandwidth

Figure 31: SSB spectra from suppressing one DSB sideband.

4.85. BW Inefficiency in DSB-SC system: Recall that for real-valued baseband signal m(t), the conjugate symmetry property from 2.30 says that

$$M(-f) = (M(f))^*.$$

The DSB spectrum has two sidebands: the upper sideband (USB) and the lower sideband (LSB), each containing complete information about the baseband signal m(t). As a result, DSB signals occupy twice the bandwidth required for the baseband.

4.86. Rough Approximation: If $g_1(t)$ and $g_2(t)$ have bandwidths B_1 and B_2 Hz, respectively, the bandwidth of $g_1(t)g_2(t)$ is $B_1 + B_2$ Hz.

This result follows from the application of the width property¹⁸ of convolution¹⁹ to the convolution-in-frequency property.

Consequently, if the bandwidth of g(t) is B Hz, then the bandwidth of $g^2(t)$ is 2B Hz, and the bandwidth of $g^n(t)$ is nB Hz. We mentioned this property in 2.42.

¹⁸This property states that the width of x * y is the sum of the widths of x and y.

¹⁹The width property of convolution does not hold in some pathological cases. See [5, p 98].

- **4.87.** To improve the spectral efficiency of amplitude modulation, there exist two basic schemes to either utilize or remove the spectral redundancy:
 - (a) Single-sideband (SSB) modulation, which removes either the LSB or the USB so that for one message signal m(t), there is only a bandwidth of B Hz.
- (b) Quadrature amplitude modulation (QAM), which utilizes spectral redundancy by sending two messages over the same bandwidth of 2B Hz.